Trie Exercise 1
前缀树
,又称 字典树
,是 N 叉树
的特殊形式
前缀树的插入和搜索
实际应用 I
前缀树广泛应用于 存储
字符串和 检索
关键字,特别是和 前缀
相关的关键字。
自动补全
一个简单的实现自动补全的方法是在前缀树中存储ngram,并根据词频进行搜索推荐。请仔细思考,什么是解决这个问题的理想的节点结构。
拼写检查(添加与搜索单词 - 数据结构设计)
在前缀树中找到具有相同前缀的单词很容易。但是怎么找到相似的单词呢?你可能需要运用一些搜索算法来解决这个问题。
实际应用 II
在前一章节中,我们练习了几道经典的的前缀树问题。但是,前缀树的实际应用并不只是那么简单。
- 加速深度优先搜索
- 有时,我们会用前缀树来加速深度优先搜索。特别是当我们使用深度优先搜索解决文字游戏类问题的时候。 我们在文章后面为你提供习题:单词搜索 II 。请先尝试深度优先算法,再使用前缀树进行优化。
- 存储其他数据类型
- 我们通常会使用前缀树来存储字符串,但并非总是如此。 数组中两个数的最大异或值 是一道很有意思的问题。还有一些其他应用,例如 IP 路由(最长前缀匹配)。
练习:
208. Implement Trie (Prefix Tree)
难度中等1162
A trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.boolean search(String word)
Returnstrue
if the stringword
is in the trie (i.e., was inserted before), andfalse
otherwise.boolean startsWith(String prefix)
Returnstrue
if there is a previously inserted stringword
that has the prefixprefix
, andfalse
otherwise.
Example 1:
Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]
Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
andprefix
consist only of lowercase English letters.- At most
3 * 104
calls in total will be made toinsert
,search
, andstartsWith
思路:
- 这道题就是如何实现字典树
- 首先是一个指针数组
children
,children[0]代表’a’, children[25] reflects ‘z’ -
boolean attribute
is_end
, determine whether it is the end - Insert
- this children[i] already exists, point go to next
- this children[i] doesn’t exist, create it, go to next
- repeat until we find the end, and let this children[i] is_end = 1
- search_prefix
- this children[i] already exists, point go to next
- this children[i] doesn’t exist, return None
- repeat until we return None or we find the end
- search
- node can be find in serach_prefix and node.is_end is 1
- startsWith
- just use search_prefix
代码:
677. 键值映射
难度中等203
设计一个 map ,满足以下几点:
- 字符串表示键,整数表示值
- 返回具有前缀等于给定字符串的键的值的总和
实现一个 MapSum
类:
MapSum()
初始化MapSum
对象void insert(String key, int val)
插入key-val
键值对,字符串表示键key
,整数表示值val
。如果键key
已经存在,那么原来的键值对key-value
将被替代成新的键值对。int sum(string prefix)
返回所有以该前缀prefix
开头的键key
的值的总和。
示例 1:
输入:
["MapSum", "insert", "sum", "insert", "sum"]
[[], ["apple", 3], ["ap"], ["app", 2], ["ap"]]
输出:
[null, null, 3, null, 5]
解释:
MapSum mapSum = new MapSum();
mapSum.insert("apple", 3);
mapSum.sum("ap"); // 返回 3 (apple = 3)
mapSum.insert("app", 2);
mapSum.sum("ap"); // 返回 5 (apple + app = 3 + 2 = 5)
提示:
1 <= key.length, prefix.length <= 50
key
和prefix
仅由小写英文字母组成1 <= val <= 1000
- 最多调用
50
次insert
和sum
思路:
- Of course we can use brute force, we can store all keys and values in a hash table
- When we need to search prefix, we can search every key and value
- if the prefix in the key, we can add its value to the result
- 注意用self.hash_table.items(), 这样产生的才是键值对,用enumerate产生的是从0开始的index
- Python 对于str类型提供了一个.startswith()来判断string之间的1包含关系
- Time Complexity: N is num of keys, M is the length of the longest key
- insert is O(1), sum is O(NM)
-
Space Complexity: O(MN)
- However, since we are dealing with prefixes, we can use Trie to solve this problem. Trie is a natural data structure to approach this problem
- 对于insert,
648. 单词替换
难度中等166
在英语中,我们有一个叫做 词根
(root) 的概念,可以词根后面添加其他一些词组成另一个较长的单词——我们称这个词为 继承词
(successor)。例如,词根an
,跟随着单词 other
(其他),可以形成新的单词 another
(另一个)。
现在,给定一个由许多词根组成的词典 dictionary
和一个用空格分隔单词形成的句子 sentence
。你需要将句子中的所有继承词用词根替换掉。如果继承词有许多可以形成它的词根,则用最短的词根替换它。
你需要输出替换之后的句子。
示例 1:
输入:dictionary = ["cat","bat","rat"], sentence = "the cattle was rattled by the battery"
输出:"the cat was rat by the bat"
示例 2:
输入:dictionary = ["a","b","c"], sentence = "aadsfasf absbs bbab cadsfafs"
输出:"a a b c"
提示:
1 <= dictionary.length <= 1000
1 <= dictionary[i].length <= 100
dictionary[i]
仅由小写字母组成。1 <= sentence.length <= 10^6
sentence
仅由小写字母和空格组成。sentence
中单词的总量在范围[1, 1000]
内。sentence
中每个单词的长度在范围[1, 1000]
内。sentence
中单词之间由一个空格隔开。sentence
没有前导或尾随空格。
思路:
- 使用map()来进行函数的迭代。
- 最简单的方法是对于每个单词,用sentence.split()来去除空格并且提取
- 时间复杂度:然后对于每个单词都进行一次搜索看看需不需要replace。对于长度为xi的单词,需要xi ^ 2检查,一共是O(N*xi^2)。但是没太想明白
- 空间复杂度:我认为map的时候可能也要用空间,姑且认为是O(N)
- 更好的办法是把所有的词根都放在前缀树上,在树上查找每个单词的最短词根
-
这样空间时间都是O(N)
- 完整实现的,一点不快,而且空间消耗更大,不清楚为什么说是O(N)
- 两个for的是最快的
642. 设计搜索自动补全系统
难度困难122
为搜索引擎设计一个搜索自动补全系统。用户会输入一条语句(最少包含一个字母,以特殊字符 '#'
结尾)。
给定一个字符串数组 sentences
和一个整数数组 times
,长度都为 n
,其中 sentences[i]
是之前输入的句子, times[i]
是该句子输入的相应次数。对于除 ‘#’
以外的每个输入字符,返回前 3
个历史热门句子,这些句子的前缀与已经输入的句子的部分相同。
下面是详细规则:
- 一条句子的热度定义为历史上用户输入这个句子的总次数。
- 返回前
3
的句子需要按照热度从高到低排序(第一个是最热门的)。如果有多条热度相同的句子,请按照 ASCII 码的顺序输出(ASCII 码越小排名越前)。 - 如果满足条件的句子个数少于
3
,将它们全部输出。 - 如果输入了特殊字符,意味着句子结束了,请返回一个空集合。
实现 AutocompleteSystem
类:
-
AutocompleteSystem(String[] sentences, int[] times):
使用数组sentences
和times
对对象进行初始化。 -
List<String> input(char c)
表示用户输入了字符
c
。
- 如果
c == '#'
,则返回空数组[]
,并将输入的语句存储在系统中。 - 返回前
3
个历史热门句子,这些句子的前缀与已经输入的句子的部分相同。如果少于3
个匹配项,则全部返回。
- 如果
示例 1:
输入
["AutocompleteSystem", "input", "input", "input", "input"]
[[["i love you", "island", "iroman", "i love leetcode"], [5, 3, 2, 2]], ["i"], [" "], ["a"], ["#"]]
输出
[null, ["i love you", "island", "i love leetcode"], ["i love you", "i love leetcode"], [], []]
解释
AutocompleteSystem obj = new AutocompleteSystem(["i love you", "island", "iroman", "i love leetcode"], [5, 3, 2, 2]);
obj.input("i"); // return ["i love you", "island", "i love leetcode"]. There are four sentences that have prefix "i". Among them, "ironman" and "i love leetcode" have same hot degree. Since ' ' has ASCII code 32 and 'r' has ASCII code 114, "i love leetcode" should be in front of "ironman". Also we only need to output top 3 hot sentences, so "ironman" will be ignored.
obj.input(" "); // return ["i love you", "i love leetcode"]. There are only two sentences that have prefix "i ".
obj.input("a"); // return []. There are no sentences that have prefix "i a".
obj.input("#"); // return []. The user finished the input, the sentence "i a" should be saved as a historical sentence in system. And the following input will be counted as a new search.
提示:
n == sentences.length
n == times.length
1 <= n <= 100
1 <= sentences[i].length <= 100
1 <= times[i] <= 50
c
是小写英文字母,'#'
, 或空格' '
- 每个被测试的句子将是一个以字符
'#'
结尾的字符c
序列。 - 每个被测试的句子的长度范围为
[1,200]
- 每个输入句子中的单词用单个空格隔开。
input
最多被调用5000
次
思路:
- 首先对于字典树的构成,我们可以用dict()也可以用list
- 通常用dict()是担心列表存储的是数字,会很稀疏。但是字母就无所谓了
- 不过用list要用ord()来计算下标,使用dict不用,所以综合来看,还是dict更好
- 使用sorted而不是sort()
代码:
- 41行用set还是用list都一样
211. 添加与搜索单词 - 数据结构设计
难度中等422
请你设计一个数据结构,支持 添加新单词 和 查找字符串是否与任何先前添加的字符串匹配 。
实现词典类 WordDictionary
:
WordDictionary()
初始化词典对象void addWord(word)
将word
添加到数据结构中,之后可以对它进行匹配bool search(word)
如果数据结构中存在字符串与word
匹配,则返回true
;否则,返回false
。word
中可能包含一些'.'
,每个.
都可以表示任何一个字母。
示例:
输入:
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
输出:
[null,null,null,null,false,true,true,true]
解释:
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // 返回 False
wordDictionary.search("bad"); // 返回 True
wordDictionary.search(".ad"); // 返回 True
wordDictionary.search("b.."); // 返回 True
提示:
1 <= word.length <= 25
addWord
中的word
由小写英文字母组成search
中的word
由 ‘.’ 或小写英文字母组成- 最多调用
104
次addWord
和search
思路:
- 使用hash map会是很简单的
- Why Trie and not HashMap?
- This solution passes all leetcode test cases, and formally has O(MN) time complexity for the search, where M is a length of the word to find, and N*is the number of words. Although this solution is not efficient for the most important practical use cases:
- Finding all keys with a common prefix.
- Enumerating a dataset of strings in lexicographical order.按照词典顺序列举字符串数据集。
- Scaling for the large datasets.大型数据集的缩放 Once the hash table increases in size, there are a lot of hash collisions and the search time complexity could degrade to O(N^2⋅M), where Nis the number of the inserted keys.
- Trie could use less space compared to hashmap when storing many keys with the same prefix. In this case, using trie has only O(M⋅N) time complexity, where M is the key length, and N is the number of keys.
- 好,那么我们怎么用trie解决这个问题?
添加:
搜索:
425. 单词方块
难度困难77
给定一个单词集合 words
(没有重复),找出并返回其中所有的 单词方块 。 words
中的同一个单词可以被 多次 使用。你可以按 任意顺序 返回答案。
一个单词序列形成了一个有效的 单词方块 的意思是指从第 k
行和第 k
列 0 <= k < max(numRows, numColumns)
来看都是相同的字符串。
- 例如,单词序列
["ball","area","lead","lady"]
形成了一个单词方块,因为每个单词从水平方向看和从竖直方向看都是相同的。
示例 1:
输入:words = ["area","lead","wall","lady","ball"]
输出: [["ball","area","lead","lady"],
["wall","area","lead","lady"]]
解释:
输出包含两个单词方块,输出的顺序不重要,只需要保证每个单词方块内的单词顺序正确即可。
示例 2:
输入:words = ["abat","baba","atan","atal"]
输出:[["baba","abat","baba","atal"],
["baba","abat","baba","atan"]]
解释:
输出包含两个单词方块,输出的顺序不重要,只需要保证每个单词方块内的单词顺序正确即可。
提示:
1 <= words.length <= 1000
1 <= words[i].length <= 4
words[i]
长度相同words[i]
只由小写英文字母组成words[i]
都 各不相同
336. 回文对
难度困难305
给定一组 互不相同 的单词, 找出所有 不同 的索引对 (i, j)
,使得列表中的两个单词, words[i] + words[j]
,可拼接成回文串。
示例 1:
输入:words = ["abcd","dcba","lls","s","sssll"]
输出:[[0,1],[1,0],[3,2],[2,4]]
解释:可拼接成的回文串为 ["dcbaabcd","abcddcba","slls","llssssll"]
示例 2:
输入:words = ["bat","tab","cat"]
输出:[[0,1],[1,0]]
解释:可拼接成的回文串为 ["battab","tabbat"]
示例 3:
输入:words = ["a",""]
输出:[[0,1],[1,0]]
提示:
1 <= words.length <= 5000
0 <= words[i].length <= 300
words[i]
由小写英文字母组成
139. 单词拆分
难度中等1578
给你一个字符串 s
和一个字符串列表 wordDict
作为字典。请你判断是否可以利用字典中出现的单词拼接出 s
。
注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
示例 1:
输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。
示例 2:
输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。
注意,你可以重复使用字典中的单词。
示例 3:
输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false
提示:
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s
和wordDict[i]
仅有小写英文字母组成wordDict
中的所有字符串 互不相同
140. 单词拆分 II
难度困难586
给定一个字符串 s
和一个字符串字典 wordDict
,在字符串 s
中增加空格来构建一个句子,使得句子中所有的单词都在词典中。以任意顺序 返回所有这些可能的句子。
注意:词典中的同一个单词可能在分段中被重复使用多次。
示例 1:
输入:s = "catsanddog", wordDict = ["cat","cats","and","sand","dog"]
输出:["cats and dog","cat sand dog"]
示例 2:
输入:s = "pineapplepenapple", wordDict = ["apple","pen","applepen","pine","pineapple"]
输出:["pine apple pen apple","pineapple pen apple","pine applepen apple"]
解释: 注意你可以重复使用字典中的单词。
示例 3:
输入:s = "catsandog", wordDict = ["cats","dog","sand","and","cat"]
输出:[]
提示:
1 <= s.length <= 20
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 10
s
和wordDict[i]
仅有小写英文字母组成wordDict
中所有字符串都 不同
472. 连接词
难度困难251
给你一个 不含重复 单词的字符串数组 words
,请你找出并返回 words
中的所有 连接词 。
连接词 定义为:一个完全由给定数组中的至少两个较短单词组成的字符串。
示例 1:
输入:words = ["cat","cats","catsdogcats","dog","dogcatsdog","hippopotamuses","rat","ratcatdogcat"]
输出:["catsdogcats","dogcatsdog","ratcatdogcat"]
解释:"catsdogcats" 由 "cats", "dog" 和 "cats" 组成;
"dogcatsdog" 由 "dog", "cats" 和 "dog" 组成;
"ratcatdogcat" 由 "rat", "cat", "dog" 和 "cat" 组成。
示例 2:
输入:words = ["cat","dog","catdog"]
输出:["catdog"]
提示:
1 <= words.length <= 104
0 <= words[i].length <= 1000
words[i]
仅由小写字母组成0 <= sum(words[i].length) <= 105
212. 单词搜索 II
难度困难652
给定一个 m x n
二维字符网格 board
和一个单词(字符串)列表 words
, 返回所有二维网格上的单词 。
单词必须按照字母顺序,通过 相邻的单元格 内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。
示例 1:
输入:board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
输出:["eat","oath"]
示例 2:
输入:board = [["a","b"],["c","d"]], words = ["abcb"]
输出:[]
提示:
m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j]
是一个小写英文字母1 <= words.length <= 3 * 104
1 <= words[i].length <= 10
words[i]
由小写英文字母组成words
中的所有字符串互不相同
588. Design In-Memory File System
难度困难77
Design a data structure that simulates an in-memory file system.
Implement the FileSystem class:
-
FileSystem()
Initializes the object of the system. -
List<String> ls(String path)
- If
path
is a file path, returns a list that only contains this file’s name. - If
path
is a directory path, returns the list of file and directory names in this directory.
The answer should in
lexicographic order
.
- If
-
void mkdir(String path)
Makes a new directory according to the givenpath
. The given directory path does not exist. If the middle directories in the path do not exist, you should create them as well. -
void addContentToFile(String filePath, String content)
- If
filePath
does not exist, creates that file containing givencontent
. - If
filePath
already exists, appends the givencontent
to original content.
- If
String readContentFromFile(String filePath)
Returns the content in the file atfilePath
.
Example 1:
Input
["FileSystem", "ls", "mkdir", "addContentToFile", "ls", "readContentFromFile"]
[[], ["/"], ["/a/b/c"], ["/a/b/c/d", "hello"], ["/"], ["/a/b/c/d"]]
Output
[null, [], null, null, ["a"], "hello"]
Explanation
FileSystem fileSystem = new FileSystem();
fileSystem.ls("/"); // return []
fileSystem.mkdir("/a/b/c");
fileSystem.addContentToFile("/a/b/c/d", "hello");
fileSystem.ls("/"); // return ["a"]
fileSystem.readContentFromFile("/a/b/c/d"); // return "hello"
Constraints:
1 <= path.length, filePath.length <= 100
path
andfilePath
are absolute paths which begin with'/'
and do not end with'/'
except that the path is just"/"
.- You can assume that all directory names and file names only contain lowercase letters, and the same names will not exist in the same directory.
- You can assume that all operations will be passed valid parameters, and users will not attempt to retrieve file content or list a directory or file that does not exist.
1 <= content.length <= 50
- At most
300
calls will be made tols
,mkdir
,addContentToFile
, andreadContentFromFile
.
1268. 搜索推荐系统
难度中等115
给你一个产品数组 products
和一个字符串 searchWord
,products
数组中每个产品都是一个字符串。
请你设计一个推荐系统,在依次输入单词 searchWord
的每一个字母后,推荐 products
数组中前缀与 searchWord
相同的最多三个产品。如果前缀相同的可推荐产品超过三个,请按字典序返回最小的三个。
请你以二维列表的形式,返回在输入 searchWord
每个字母后相应的推荐产品的列表。
示例 1:
输入:products = ["mobile","mouse","moneypot","monitor","mousepad"], searchWord = "mouse"
输出:[
["mobile","moneypot","monitor"],
["mobile","moneypot","monitor"],
["mouse","mousepad"],
["mouse","mousepad"],
["mouse","mousepad"]
]
解释:按字典序排序后的产品列表是 ["mobile","moneypot","monitor","mouse","mousepad"]
输入 m 和 mo,由于所有产品的前缀都相同,所以系统返回字典序最小的三个产品 ["mobile","moneypot","monitor"]
输入 mou, mous 和 mouse 后系统都返回 ["mouse","mousepad"]
示例 2:
输入:products = ["havana"], searchWord = "havana"
输出:[["havana"],["havana"],["havana"],["havana"],["havana"],["havana"]]
示例 3:
输入:products = ["bags","baggage","banner","box","cloths"], searchWord = "bags"
输出:[["baggage","bags","banner"],["baggage","bags","banner"],["baggage","bags"],["bags"]]
示例 4:
输入:products = ["havana"], searchWord = "tatiana"
输出:[[],[],[],[],[],[],[]]
提示:
1 <= products.length <= 1000
1 <= Σ products[i].length <= 2 * 10^4
products[i]
中所有的字符都是小写英文字母。1 <= searchWord.length <= 1000
searchWord
中所有字符都是小写英文字母。
1166. 设计文件系统
难度中等26
你需要设计一个文件系统,你可以创建新的路径并将它们与不同的值关联。
路径的格式是一个或多个连接在一起的字符串,形式为: /
,后面跟着一个或多个小写英文字母。例如, " /leetcode"
和 "/leetcode/problems"
是有效路径,而空字符串 ""
和 "/"
不是。
实现 FileSystem
类:
bool createPath(string path, int value)
创建一个新的path
,并在可能的情况下关联一个value
,然后返回true
。如果路径已经存在或其父路径不存在,则返回false
。int get(string path)
返回与path
关联的值,如果路径不存在则返回-1
。
示例 1:
输入:
["FileSystem","create","get"]
[[],["/a",1],["/a"]]
输出:
[null,true,1]
解释:
FileSystem fileSystem = new FileSystem();
fileSystem.create("/a", 1); // 返回 true
fileSystem.get("/a"); // 返回 1
示例 2:
输入:
["FileSystem","createPath","createPath","get","createPath","get"]
[[],["/leet",1],["/leet/code",2],["/leet/code"],["/c/d",1],["/c"]]
输出:
[null,true,true,2,false,-1]
解释:
FileSystem fileSystem = new FileSystem();
fileSystem.createPath("/leet", 1); // 返回 true
fileSystem.createPath("/leet/code", 2); // 返回 true
fileSystem.get("/leet/code"); // 返回 2
fileSystem.createPath("/c/d", 1); // 返回 false 因为父路径 "/c" 不存在。
fileSystem.get("/c"); // 返回 -1 因为该路径不存在。
提示:
- 对两个函数的调用次数加起来小于等于
104
2 <= path.length <= 100
1 <= value <= 109